Serie 18

1. Untersuchen Sie die Folgen (q_n) auf Monotonie, Beschränktheit und Häufungspunkte.

(a)
$$q_n = \frac{(-2)^{n+1} + 3^n}{3^{n+1} + (-2)^n}$$

(b)
$$q_n = \cos \frac{n \cdot \pi}{4}$$

(c)
$$q_{n+1} = \frac{2}{q_n}$$
, $1 \le q_0$ $le2$

(d)
$$q_{n+1} = \sqrt{2 + q_n}, \ q_0 = \sqrt{2}$$

2. Geben Sie $n_o(\varepsilon) \in \mathbb{R}$ an, so daß gilt: $\forall n > n_0(\varepsilon)(|x_n| < \varepsilon)$.

(a)
$$x_n = \frac{(-1)^{n^2+1}}{4n^3}$$

(b)
$$x_n = \frac{2n}{n^2 - 2}$$

3. Es sei (x_n) die Ziffernfolge der Zahl π $(x_0=3,\ x_1=1,\ x_2=4,\ ...)$. Besitzt die Folge (x_n) Häufungspunkte ?

Besitzt die Folge einen Grenzwert?

4. Geben Sie $n_0(\varepsilon) \in \mathbb{R}$ an, so daß gilt: $\forall n > n_0(\varepsilon)(|a_n - a| < \varepsilon)$

(a)
$$a_n = \frac{1 - \sqrt{n}}{1 + \sqrt{n}}$$
, $a = -1$

(b)
$$a_n = \frac{n^4}{n!}$$
, $a = 0$

5. Bestimmen Sie den Grenzwert $\lim_{n\to\infty} a_n$.

(a)
$$a_n = q^n$$

(b)
$$a_n = \frac{2n^3 + 6^n}{n!}$$

(c)
$$a_n = \left(1 - \frac{1}{n^2}\right)^n$$

(d)
$$a_n = \frac{n!}{n^n}$$