Serie 19

1. Beweisen Sie, daß $\lim_{n\to\infty} 0, \underbrace{333...3}_{n \, Stellen} = \frac{1}{3}$ ist. Bilden Sie dazu die Differenzen

$$\frac{1}{3} - 0.3; \frac{1}{3} - 0.33; \frac{1}{3} - 0.333; \dots; \frac{1}{3} - 0.333; \dots; \frac{1}{3} - 0.333 \dots 3.$$

2. Bestimmen Sie die Grenzwerte $\lim_{n \to \infty} p_n$ folgender Folgen (p_n) mit

(a)
$$p_n = \frac{(-1)^n n}{n+1}$$

(b)
$$p_n = \frac{8\cos\frac{\pi}{2}n}{n+4}$$

(c)
$$p_n = 1 + (-\frac{1}{2})^n$$

(d)
$$p_n = (-1)^n + \frac{1}{2^n}$$

(e)
$$p_n = \frac{\sqrt{2n^2+1}}{2n-1}$$

(f)
$$p_n = \frac{3n}{1-2n}$$

(g)
$$p_n = \frac{1+2+3+...+n}{n+3} - \frac{n}{2}$$

(h)
$$p_n = \frac{1+2+3+...+n}{\sqrt{9n^4+1}}$$

- 3. Es sei r_n der Inkreisradius eines regelmäßigen, einem gegebenen Kreis einbeschrieben n-Ecks. Bestimmen Sie $\lim_{n\to\infty} r_n$.
- 4. Bestimmen Sie die Grenzwerte $\lim_{n \to \infty} s_n$ folgender Partialsummenfolgen (s_n) mit

(a)
$$s_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} \dots + \frac{1}{(n-1) \cdot n}$$

(b)
$$s_n = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} \dots + \frac{1}{(2n-1) \cdot (2n+1)}$$