Serie 20

- 1. Es sei (a_n) eine Folge nichtnegativer, reeller Zahlen. Zeigen Sie: Ist die Reihe $\sum_{n=0}^{\infty} a_n$ kovergent, so ist auch die Reihe $\sum_{n=0}^{\infty} a_n^2$ konvergent.
- 2. Untersuchen Sie folgende Reihen auf Konvergenz:

 - (a) $\sum_{k=0}^{\infty} (-1)^k$; (b) $\sum_{n=2}^{\infty} \sqrt[n]{a}$, 0 < a < 1; (c) $\sum_{k=1}^{\infty} (\frac{1}{4^k} \frac{3}{2^k})$; (d) $\sum_{n=1}^{\infty} (1 \frac{1}{n})^n$;
- (e) $\sum_{n=1}^{\infty} (-1)^{\frac{n(n-1)}{2}} \cdot \frac{1}{3^n}$.
- 3. Untersuchen Sie folgende Reihen mit Hilfe des Wurzel- bzw. des Quotientenkriteriums auf

- (a) $\sum_{k=0}^{\infty} \frac{2^k}{(k+1)!}$; (b) $\sum_{n=1}^{\infty} \frac{(n!)^2 \cdot 5^n}{(2n)!}$; (c) $\sum_{k=2}^{\infty} \frac{1}{(\ln k)^k}$; (d) $\sum_{k=1}^{\infty} \frac{k^2}{(2-\frac{1}{k})^k}$;
- 4. Konvergiert die Reihe $\sum\limits_{n=1}^{\infty}\ln\frac{(n+1)^2}{n^2+2n}$? Bestimmen Sie gegebenenfalls ihren Wert.
- 5. Geben Sie die Menge aller $x \in \mathbb{R}$ an, für die die Reihe $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^{n-1}}$ konvergiert.