Serie 4

- 1. Zeigen Sie, dass die Potenzmenge P(M) jeder endlichen Menge M mächtiger als M ist.
- 2. Überprrüfen Sie, ob durch folgende Vorschriften ${\bf R}$ Äquivalenz- bzw. Halbordnungsrelationen über der Menge M definiert werden.
 - (a) $M = \mathbb{N}$, $x \mathbf{R} y \iff x + y \text{ gerade}$
 - (b) $M = \mathbb{N}$, $x \mathbf{R} y \iff x + y$ ungerade
 - (c) $M = \mathbb{N}, \quad x \mathbf{R} y \iff x \leq y$
 - (d) $M = \mathbb{Z}$, $x \mathbf{R} y \iff x y$ durch 3 teilbar
 - (e) $M = \mathbb{N}$, $x \mathbf{R} y \iff x \text{ ist das Quadrat von } y$
- 3. Untersuchen Sie, ob folgende Relationen T über der betreffeden Menge X Äquivalenzrelationen sind und veranschaulichen Sie gegebenenfalls die Äquivalenzklassen.
 - (a) $X = \mathbb{N}$, $m \mathbf{T} n \Longleftrightarrow \sin \frac{\pi m}{2} \cdot \sin \frac{\pi n}{2} > 0$ oder $|\sin \frac{\pi m}{2}| + |\sin \frac{\pi n}{2}| = 0$;
 - (b) $X = \mathbb{R}$, $x \mathbf{T} y \iff [x] = [y]$, wobei [x] die größte ganze Zahl z mit $z \le x$ bedeutet;
 - (c) $X = \{ (x,y) \in \mathbb{R}^2 \mid x > 0, y > 0 \},$ $(x_1, y_1) \mathbf{T}(x_2, y_2) \iff x_1^2 + y_1^2 = x_2^2 + y_2^2;$
 - (d) X sei die Menge aller Geraden einer affinen Ebene, $g_1 \mathbf{T} g_2 \Longleftrightarrow g_1 \cap g_2 = \emptyset$ oder $g_1 = g_2$.
- 4. Untersuchen Sie die folgenden Abbildungen $f: X \to Y$ auf ihre Eigenschaften:
 - (a) $X = [0,1], Y = [-\frac{1}{8},1], f(x) = 2x^2 x;$
 - (b) X = [1,2], Y = [1,3], f(x) = |x|;
 - (c) X = [-1, 1], Y = [0, 1], f(x) = |x|.