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Abstract

In 1964, F. Nozicka published his supporting hyperballs method for solving
linear programming problems. We present finite algorithmic models contain-
ing this method as a particular case. The main tool is here an addition to the
well-known Farkas Lemma that restricts the selection of feasible descent di-
rections in a boundary point of the feasible domain to a linear subspace. With
the aid of projection and reduction methods, an extension to quadratic prob-
lems is possible. The algorithmic models are constructed in such a way that
finiteness without constraint qualifications is guaranteed, and, in addition, nu-
merically stable implementations are possible. Numerical tests for problems
on which the simplex method attains exponential complexity confirm the high
(evidently, dimension-independent) efficiency of the models.
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Basic for the sequel is the following assertion:
Given are an m X n—matriz A € R™*™ and a vector c € R". If the linear inequality
system

Ay<o, cfy<o0

s solvable then it also possesses a solution of the form

y = —(upc + ATu), ug 2 0,u 2 o.

Proof. The solution set of the inequality system and the column space of the matrix
[AT c] are convex; thus the separation theorem for convex sets is applicable. We
suppose that both sets are disjoint. Then, according to the separation theorem [1]
there is a hyperplane that separates both sets. Thus, there exists a non-zero vector
d € R” such that

d’x 20 Vx: x=—(upc+ ATu), up 2 0,uo.

and
dTx20 Vx: AxZo,cfx < 0.



It follows from the last condition that, in accordance with the Farkas Lemma, the
system
d = —(ATu+upc), up20,uo

is solvable. Inserting this into the first condition, we get d’d =0 or d = o. This
contradiction proves our assertion. q.e.d.

Since both systems Ay < o,c’y < 0 and y = ugc + ATu are homogeneous, we can
replace the first one by Ay < o,cly = —1.

In [4] we substantiated an algorithmic model for linear programming problems with
e—active index sets. Here we consider the case ¢ = 0 and extend it to quadratic
problems. Firstly we consider the linear programming problem

L£: min{cx|Ax<b}

with c € R",b € R™, A = (ai;)mna- Let AT, ... AT be the rows of the matrix A. For
each vector x we denote by A, the submatrix of A consisting exactly of the rows A;
satisfying ATx = b,.

We assign to each feasible point x of problem L the set

T(X) :{y ‘ Axyéo,CTy: _1,y:u0c+AZu }

The dimension of the vector u is chosen in such a way that the equalities make sense.
Thus, we have in this case u € R/®I where I(x) is the active index set for a feasible
point x:

I(x)={i|Alx=1b;}.

If the set Y(x) is non-empty, then all vectors from this set are descent directions for
the objective function. Therefore we call the set Y(x) feasible descent polyhe-
dron in the point x. For optimal solutions x* (for them only) the feasible descent
polyhedron is empty since we have

—c=A%u, uzo
and, according to the assertion formulated at the beginning, the system
AcySo, cly=-1

has no solutions of the form y = ugc + AL u.

The connection with the supporting hyperballs method by F. Nozicka [3] is clarified
by the following considerations. Without loss of generality, we can assume that the
normal vectors A;, c of the hyperplanes

Hi={x|Alx=0},i=1,....m Hy={x|Ix=0}

are normalized: ||A;||=1,i=1,...,m, ||c]| = 1.
If we select, as the feasible direction polyhedron in a vertex of the regular feasible
set, the set

{Y|Axyé _1}

and its extreme point y as the solution of A,y = —1, then all points of ray

X(A) =x+Ay,A >0



have distance A from all active boundary hyperplanes. This ray is the axis introduced
by Nozi¢ka. The ball K, with center x(A) and radius A touches all active hyperplanes.
If the point x*(\) is the minimizer of the objective function on the ball K, then
x*(A),A > 0 represents a ray and lies entirely in the feasible descent polyhedron
defined above. With the additional assumption that the axis is orthogonal to the
boundary face Nozitka managed to define an axis in each boundary point ([3]).
The idea of the algorithmic model to be justified here is the following.

Step 1 (Minimization on a closed boundary face).

Starting with a feasible solution x° of problem £ we minimize the objective function
over the closed boundary face S(x°) of the feasible domain defined by I° = I(x°).
Let x*(I°) be the corresponding optimal solution. If this solution is optimal for
problem L, then the method terminates.

Step 2 (Transition to another face).

We determine a descent direction y*(I°) in the point x*(I°) directed towards the
(relative) interior of the feasible domain. Choosing an optimal step length along
this direction we obtain a new feasible solution x! on a boundary face characterized
by the active index set I(x'). We go back to Step 1.

Many well-known methods use in Step 2 an inactivating strategy based on the values
of the Lagrange multipliers (cf. [6] and the literature cited therein). The inactivation
of a constraint is undertaken in such a way that multiple inactivation can lead to
infeasible directions. Here we avoid this by restricting the set of feasible directions.
For the minimization over a boundary face of the feasible domain, we need the set
T%(x) of all extreme points of the descent polyhedron:

Tx)={y|Ay=o0,c"y=—1,y =upc+Alu}.

The extreme point can be computed in a numerically stable way. Let the matrix
[AL c] be column regular. Then there is exactly one extreme point. We perform a
QR—factorization of the matrix [Al' c]:

Q=g

Here R = (r4)p,p is an upper triangular matrix of order p = |I(z)| + 1. Then we

o av=[2][21-]7]
=a2]

A,
¥

implies that, after substituting the factorization, the unknown vector z can be de-
termined as the solution of the system

where z € RP. Thus

The condition

This yields the solution



The extreme point of the descent polyhedron is then
1
y =——Qe,.
Tpp

In this representation we use the same symbol e, for the p—th unit vector in each
vector space. The Lagrange multipliers are obtained by solving the system

1
R[ u }z__e,,.
Uo Tpp

In the case ug > 0,u Z o the current solution is optimal.
For the descent polyhedron we have the description

T = (yly=0Q| 2| Rzz —e).

In a vertex x with regular matrix A,, the QR—factorization of the matrix [Al c| has
the form
[Ax el =Q[R,q].

Therefore the descent polyhedron is
Yx)={y|y=Qz, R"z%0,¢c"z=~-1}.

The Lagrange multipliers vector u, related to a vertex, is the solution of the system

Ru = —c.
In the case u Z o the vertex is optimal; otherwise there is the following possibility
for finding a feasible descent direction. Let v € R® with v 2 o,u’v = —1 and Z be
the solution of Rz = —v. Then we have
dz=—uTRIz=ulv=—-1,

and the vector y = Qz is a feasible descent direction, i. e. y € T(x).

The transition to a new feasible solution changes the matrix [AI c] by adding
or deleting some columns. This change can be realized by updating the current
QR—factorization [6].

Let x be a feasible solution to problem £ and T°(x) # (). We choose y € T°(x). For
the ray x(\) = x + Ay we get then

c'x(\) = c'x — A,
and for A > 0 we should take the value for which the ray leaves the feasible domain:

. _ AT
)\:A(x,y):min{bZA#’X ATy >0, i ¢ I(x) }
iy

If the descent polyhedron contains no extreme points then each point of the corre-
sponding boundary face is a minimal point of the objective function with respect to



this face. Summarizing, we can represent the minimization of the objective function
over a boundary face in the form

while (y = ®°(Y°(x))) # o do x := x + A(x,y)y.

The iteration starts with an arbitrary feasible point; ®° is a selection function for
the corresponding set (®°(@) = o). In every iterative step we add at least one
constraint to the set of active constraints. Thus the iteration ends with T°(x) = @
and therefore with a feasible solution X = x*(x) minimizing the objective function
over the closed boundary face S(x). If the descent polyhedron at the point X is
empty (that is T(X) = () then the point X is an optimal solution to the problem L.
This test is equivalent to the optimality test for the point X, and here it is realized
by computing the Lagrange multipliers.

Otherwise we select a vector y € T(X) and set,

x =X+ A(X, )y,
which yields the objective function value
cI'x — A(X,Y).

The selection of y € T(X) can be done in different ways (see above). Summing up,
we obtain an algorithmic model starting with an arbitrary feasible solution:

while (y = ®(Y(x))) # o do
A(L,x) : { while (y = ®°(Y°(x))) # o do x := x + A(x,y)y
x:=x+ A(x,y)y }.

Here ®° and ® are selection functions for the respective sets.
Theorem 1 Let a solvable problem
min{ c"x | Ax<b}

be given. Then, for an arbitrary feasible starting point x, the algorithmic model
A(L,x) yields an optimal solution in a finite number of steps.

Proof. Having in mind the description above, we note that the rules for minimiz-
ing the objective function over a boundary face of the feasible domain imply the
termination of the process after at most n steps. If the corresponding point is not
optimal, we go to a new boundary face where the objective function takes a smaller
value. Therefore, no cycles of boundary faces can arise in this algorithmic model.
q.e.d.

It is interesting to note that the algorithmic model does not require a constraint
qualification; however, for a particular implementation of the iterative steps, we are
compelled to take into account a constraint qualification for the problem in question.
We illustrate the performance of this scheme on a numerical example. Consider the
problem (with ¢ € (0,0.5))

min{ —elx |02, 1, ex; 1SS 1 —em g, i=2,...,n}.



This is a typical problem for which the simplex method with the starting point x = o
enumerates all 2" vertices of the feasible domain [5] before finding the obvious opti-
mal solution x* = e,,. We implemented an algorithm where the vector v (see above)
is chosen according to the following rule. Let u be the n—dimensional Lagrange
multiplier vector in a vertex. For ¢ = [{ i | u; < 0 }| we set

1
- u; <0
qu; = Uy .
0, otherwise

The following table represents the number of iterations for various values of € and
n.

10 20 30 50 100 200 500
006 9 9 9 9 9 9 9
0.10 11 12 12 12 12 12 12
01511 14 14 14 14 14 14
02011 16 16 16 16 16 16
025(11 18 18 18 18 18 18
03011 21 21 21 21 21 21
03512 22 24 24 24 24 24
040 (12 22 53 53 53 53 53
045 (12 22 31 31 31 31 31

If we choose the vector v as
1

V=———"u_
Ju-*

where the vector u_ contains only the negative Lagrange multipliers (other compo-
nents are zeroes), we get the following table:

10 20 30 50 100 200 500
006 8 8 8 8 8 8 8
0.10 {10 10 10 10 10 10 10
01510 13 13 13 13 13 13
02010 15 15 15 15 15 15
02510 17 17 17 17 17 17
03010 19 19 19 19 19 19
03510 20 22 22 22 22 22
040 |10 20 25 25 25 25 25
04510 20 29 29 29 29 29

Note that the number of iterations depends on the criterion for including a constraint
into the active constraint set. In the above mentioned cases we took b;—AT x < 10710,
If we take b; — ATx < 1072 then the number of iterations will be reduced drastically.
For the first case we have the following table.
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If we choose the vector v in the form

W ~J Ot O i s s WO
w

—_

—_
O W ~J Ot O i = W

—_
CO W J Ot Ot i bW

[

GO W ~J Ot U i =
—_

CO W ~J Ut U ix i W

oo

CO W ~J Ut UL i =
OO W ~J Ut UL ix =

1
V= ——¢,
T

(with u, = min{ u; | u; < 0 }) then we obtain the simplex method.
We consider now the quadratic problem

Q: min{ f(x) |Ax=b}

with f(x) = c’'x+ %XTCX and a symmetric positive definite n x n—matrix C. In this
case, for a given feasible point x, we can reduce the minimization of the objective
function over the affine subspace { x | Afx = b;, 7 € I } defined by the active index
set I = I(x), to the solution of the following linear equation system

IR

If the matrix A, is row regular, and y is the solution to this system then the point
X +y is the minimizer on the affine subspace [6]. In the case y = o the vector x is
readily the minimizer. Let ¥ be a minimizing operator over a subspace:

y =¥(f,%).

The operator ¥, similarly to the previous case, can be implemented (in a numerically
stable way) by means of a QR—factorization of the matrix AT and a Cholesky-
factorization of the matrix C. The determination of the step size has to be modified
as follows

A =min{ 1,A(x,y) }.

The descent polyhedron is now
T) ={y[Ay o, f(x)Ty=~1y=uf(x) + A{u}.
In the case T(x) = () we have readily the solution. If y is a feasible descent direction
then the minimum of the function f over the ray x + Ay is attained at the point
1
y'Cy””
Thus we have the following algorithmic model:
while (y = ®(Y(x))) # o do
A(Q,x) : { while (y = ¥(f’,x)) # o do x := x+ min{ 1, A(x,y) }y

x :=x+ min{ ore, Ax,¥) }¥ }-

X+

The finiteness of this scheme can be proved similarly to the linear case.



Theorem 2 For an arbitrary feasible starting point x, the algorithmic model A(Q, x)
solves the quadratic problem Q in a finite number of steps.

As an illustrative example we set C = E and modify thereby the objective function
of the previous example. We obtain the following table (for the case when the active
index set is determined by b; — ATx < 10719).

10 20 30 50 100 200 500
005 v 7 7 7 7 7 7
0.10{ 7 10 10 10 10 10 10
015 4 8 8 8 8 8 8
020 4 7 7 7 7 7 7
0252 9 9 9 9 9 9
030 2 8 12 12 12 12 12
035 2 6 10 10 10 10 10
040 2 4 13 13 13 13 13
045 2 4 13 13 13 13 13
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